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Answer all the questions. Each question carries 20 marks.

1. (a). (i). Prove that refinement of partitions decreases the upper Riemann Stieltjes sum. 

(OR)

(ii). If f is monotonic on [a, b], and if 
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 is continuous on [a, b], then prove 


 that 
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(b). (i). Suppose cn ≥ 0, for n = 1, 2, 3 …, 
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 and f is continuous on [a, b], then prove that 
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(ii). Suppose that 
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(OR)

(iii). Assume that 
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 increases monotonically and 
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 on [a, b]. Let f be a 

bounded real function on [a, b]. Then prove that 
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(iv). State and prove the fundamental theorem of Calculus. 



(8+7)

2. (a). (i). Prove that a linear operator A on a finite dimensional vector space X is 



one-to-one if and only if the range of A is all of X. 

(OR)



(ii). If 
[image: image15.wmf])

,

(

,

m

n

R

R

L

B

A

Î

 then prove that 
[image: image16.wmf]B

A

B

A

+

£

+

 and 
[image: image17.wmf]A

B

BA

£

. 
   (5)


(b). (i). Let 
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 be the set of all invertible linear operators on Rk. If 
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(ii). Obtain the chain rule of differentiation for the composition of two 


     

       functions. 
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(iii). Suppose 
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 maps an open set E
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 Rn into Rm. Then prove that 
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if and only if the partial derivatives 
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(iv). If X is a complete metric space and if 
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 is a contraction of X into X, 

then prove that there exists one and only one x in X such that 
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3. (a). (i).Show by means of an example that a convergent series of continuous functions 



may have a discontinuous sum. 

(OR)



(ii). State and prove the Cauchy criterion for uniform convergence. 


(5) 

(b). (i). Suppose 
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on a set E in a metric space. Let x be a limit point of E

and suppose that 
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(ii). Let 
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 be monotonically increasing on [a, b]. Suppose 
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(OR)

(iii). If f is a continuous complex function on  [a, b], then prove that there 

  exists a sequence of polynomials Pn such that 
[image: image40.wmf])

(

)

(

lim

x

f

x

P

n

=

uniformly on [a, b]. (15)

4. (a). (i). Define the exponential function 
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and obtain the addition formula.

(OR)


(ii). If 
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(b). (i). Given a double sequence
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(ii). Suppose that the series 
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S = (–R, R). Let E be the set of all x in S at which 
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(OR)


(iii). State and prove the Parseval’s theorem. 





(15)

5. (a). (i). If f has a derivative of order n at a point x0, then prove that the Taylor


    

polynomial 
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 for any polynomial Q of degree ≤ n.

(OR)

(ii). Define the Chebychev polynomial Tn and prove that it is of degree n and that 


the coefficient of xn is 2n–1. 





(5)


(b). (i). State and prove the construction theorem.



(ii). Let 
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 is the Chebychev polynomial of degree n+1. 










(8+7)
(OR)

(iii). Let x0, x1, …, xn be n+1 distinct points in the domain of a function f and let P 



be the interpolating polynomial of degree ≤ n, that agrees with f at these points. Choose a point x in the domain of f and let [a, b] be any closed interval containing the points x0, x1, …, xn and x. If f has derivative of order n+1 in [a, b] then prove that there is a point c in (a, b) such that 
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(iv). If f(x) has m continuous derivatives and no point occurs in the sequence x0, 

x1, …, xn more than m+1 times, then prove that there exists one polynomial  Pn(x) of degree ≤ n which agrees with f(x) at x0, x1, …, xn. 
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